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The V1V2 EOS for Detonation Products

YEHUDA PARTOM

Rafael, Haifa, Israel

Many equations of state (EOS) for detonation products
have been proposed and used. Some of them are in analyti-
cal form and some in tabular form. The most popular is the
Jones-Wilkins-Lee (JWL) EOS. One of the main para-
meters of a product’s EOS is the so-called adiabatic gamma
along its main isentrope (cs). For JWL EOSs cs(V) varies in
a nonmonotonic way. Going down from the CJ point along
the main isentrope, it first increases to create a hump, and
then, as V goes to infinity, gamma decreases to perfect
gas-like behavior with gamma around 1.3. But according
to Davis [1], cs(V) should decrease monotonically with V.
Accordingly, in this article we investigate the following:
(1) Is the hump in cs(V) necessary? and (2) Is it possible
to construct a product’s EOS with a monotonic cs(V) that
is consistent with experimental data? We find that (1) it is
possible to construct a product’s EOS without a hump in
cs(V); and (2) without a hump in cs(V) there are not
enough degrees of freedom to reproduce cylinder test data.

Keywords: detonation, detonation products, equation of
state, modeling

Introduction

Many equations of state (EOSs) for detonation products
have been proposed and used. Some of them are in analytical
form and some in tabular form. The most popular is the
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Jones-Wilkins-Lee (JWL) EOS. The main isentrope (the isen-
trope through the Chapman-Jouguet [CJ] point) of the JWL
EOS includes six adjustable parameters. These are adjusted to
fulfill the four following conditions:

. The three Hugoniot jump conditions, assuming that the
CJ detonation velocity is known from tests.

. The CJ (sonic) condition (the Raleigh line is tangent to
the Hugoniot and to the isentrope at the CJ point).

Because the number of adjustable parameters is larger than
the number of conditions, the remaining conditions are fulfilled
from tests, usually expanding cylinder tests (ECT).

The JWL EOS is a Gruneisen EOS referring to the main isen-
trope with a constant Gruneisen gamma (C).The standard
choice is C¼w, where w is one of the main isentrope parameters.

The adiabatic gamma along the main isentrope Ps(V) is
defined as:

cs ¼ � V

Ps

dPs

dV
¼ � d ‘nPs

d ‘nV
ð1Þ

Evaluating cs(V) with JWL for a common explosive, we get the
curve shown in Fig. 1. We see from Fig. 1 that cs(V) has a posi-
tive slope at the CJ point. As V increases, it increases to a quite
high maximum (hump) and then decreases to 1þw as V goes to
infinity. For some common explosives cs(V) has even two humps.

Bill Davis [1] outlined schematically the expected variation of
the functions cs(V) andC(V). In Fig. 2 we reproduce his schematic
curves. We see from Fig. 2 that both curves are monotonically
decreasing and have no humps. Bill Davis [1] did not provide a jus-
tification for his schematic curves. Eight years later, Bill Davis [2]
showed similar curves, but that time they were not schematic, and
cs(V) did have a hump. We reproduce these curves in Fig. 3.

With this background we ask the following questions:

. Is it possible to construct a main isentrope for the pro-
duct’s EOS that will have a monotonically decreasing
cs(V) curve as in Fig. 2?
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Figure 2. Adiabatic gamma and Gruneisen gamma as a
function of specific volume, according to Davis [1].

Figure 1. Adiabatic gamma as a function of specific volume,
cs(V), for a common explosive using the standard JWL
parameters.
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. For such a main isentrope, is it possible for the EOS that
refers to it to reproduce ECT data?

The standard approach to model the main isentrope has been
(1) assume a Ps(V) relation with enough adjustable parameters;
(2) adjust the parameters to satisfy CJ conditions and metal
expansion data. Examples of this approach are given in the
literature [2–8]. The JWL main isentrope, developed with this
approach, has a hump and sometimes two humps to the right
of VCJ, as seen in Fig. 1 and in Kury et al. [5] and Lee et al.
[7]. A qualitative explanation of the first hump is given in Lee
et al. [7], but there were others who called the humps (or at
least the second one) nonphysical.

What triggered this work is Davis’s claim [1] that cs(V) has to
be monotonically decreasing. Our approach is different from the
standard approach in that it assumes cs(V) explicitly (instead of
assuming Ps(V)). In this way we are able to find out whether a
hump is really necessary and for what reasons. We do this by
running a hydro-code with the cylinder test and a trial cs(V)
and seeing the consequences in the u(r� r0) curve.

Recently we developed this approach further. We assume
cs(V) as a piecewise linear function in the range of interest. This

Figure 3. Adiabatic gamma and Gruneisen gamma as a
function of specific volume, according to Davis [2].
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enables us to adjust the discrete values cs(Vi) recursively, from
left to right, and there is no need to solve a complex system of
equations. We plan to include this work in a subsequent paper.

The V1V2 EOS

We first write down equations for a monotonically decreasing
main isentrope. For simplicity, we omit the index s from the
functions cs(V), Ps(V), and Es(V) along it. For c(V) we assume
a monotonically decreasing curve (as in Fig. 2), composed of
three straight lines. We show this c(V) in Fig. 4. To evaluate
P(V) and E(V) along this isentrope we integrate Eq. (1) and
then the energy Eq. (2).

dE

dV
¼ �P ð2Þ

For the section V�V2 we get:

P ¼ P2
V

V2

� ��c1

E ¼ E2
V

V2

� ��c1þ1

; E2 ¼
P2V2

c1 � 1

ð3Þ

Figure 4. Schematic description of cs(V) for the V1V2 EOS.
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For V�V1 we get:

P ¼ PCJ
V

VCJ

� ��cCJ

; P1 ¼ PCJ
V1

VCJ

� ��cCJ

ð4Þ

where VCJ is given from the CJ condition by:

VCJ ¼ V0
cCJ

cCJ þ 1
ð5Þ

and where PCJ is given from mass and momentum conservation
jump conditions by:

PCJ ¼ q20 D
2ðV0 �VCJÞ ¼

q0D
2

cCJ þ 1
ð6Þ

where D is the CJ detonation velocity.
Also, integrating Eq. (4) we get:

E ¼ ECJ
PCJVCJ

cCJ � 1

V

VCJ

� ��cCJþ1

�1

" #

E1 ¼ ECJ
PCJVCJ

cCJ � 1

V1

VCJ

� ��cCJþ1

�1

" # ð7Þ

where ECJ and the heat of detonation Q are related by the
energy jump condition:

ECJ ¼
1

2
PCJðV0 �VCJÞ þQ ð8Þ

For V1�V�V2 we get:

c ¼ aþ bV

a ¼ cCJV2 � c1V1

V2 �V1
; b ¼ � cCJ � c1

V2 �V1

ð9Þ

268 Y. Partom

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
3
9
 
1
6
 
J
a
n
u
a
r
y
 
2
0
1
1



c ¼ aþ bV ¼ dP

dV

V

P

) P ¼ AV�a expð�bVÞ
ð10Þ

Substituting V1,P1 from Eq. (4) into Eq. (10) we get:

A ¼ P1V
a
1 expðbV1Þ

P ¼ P1
V

V1

� ��a

exp �bðV�V1Þ½ �

P2 ¼ P1
V2

V1

� ��a

exp½�bðV2 �V1Þ�

ð11Þ

To sum up, the main isentrope P(V) is given by:

P ¼ PCJ
V

CJ

� ��cCJ

for V � V1

P ¼ P1
V

V1

� ��a

exp½�bðV�V1Þ� for V1 � V � V2

P ¼ P2
V

V2

� ��c1

for V � V2

ð12Þ

where

P1 ¼ PCJ
V

VCJ

� ��cCJ

; P2 ¼ P1
V2

V1

� ��a

exp½�bðV2 �V1Þ�

ð13Þ

and where VCJ is given by Eq. (5) and PCJ by Eq. (6), and
where the CJ detonation velocity D is known from tests.

The internal energy E(V) along the section V1�V�V2 is
given by the integral:

E ¼ E2 �
Z V

V2

PðVÞ dV; V1 � V � V2 ð14Þ

where E2 is given by Eq. (3), and P2, appearing in Eq. (3), is
given by Eq. (13).
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But because P(V) along this section (given by Eq. (12)) is not
analytically integrable, we evaluate the integral in Eq. (14)
numerically, and during the integration process we construct a
table Vi,Ei. Later, when we use the EOS in a hydro-code, we
determine E in this section by linearly interpolating between
neighboring points in this table.

From the numerical integration we also get the value of E1:

E1 ¼ E2 �
Z V1

V2

PðVÞ dV ð15Þ

and substituting E1 into the second of Eq. (7) we obtain
ECJ.

When the heat of detonation Q is not known, it can be deter-
mined from Eq. (8). But when Q is known, Eq. (8) is used to
determine some other parameter. Usually we use Eq. (8) to
determine the parameter c1.

On the basis of the main isentrope described above we define
a Gruneisen EOS in the usual way:

E ¼ EsðVÞ þ V

CðVÞ½P� PsðVÞ� ð16Þ

where in Eq. (16) we put back the index s along the main
isentrope, and where we assume that C(V) is varying similar
to cs(V), as shown schematically in Fig. 2:

C ¼ CCJ for V � V1

C ¼ C1 ¼ c1 � 1 for V � V2

C ¼ aC þ bCV for V1 � V � V2

ð17Þ

aC ¼ CCJV2 � C1V1

V2 �V1
; bC ¼ �CCJ � C1

V2 �V1
ð18Þ

We determine CCJ to reproduce the experimental value of the
derivative of detonation velocity with respect to initial
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density. The equations for that (known as the Jones-
Stanyukovich-Manson [JSM] equations) are

k ¼ q0
D

dD

dq0
¼ d ‘nðDÞ

d ‘nðq0Þ

a ¼ c� 1� 2k

1þ k
; C ¼ a

1þ a
c

ð19Þ

where a is known as the Jones parameter, and where the quan-
tities in Eq. (19) are at the CJ point. For the common explosive
of Fig. 1 the values of these quantities are

dD

dq0
¼ 2:7

km=s

g=cc
;

D

q0
¼ 4:07

km=s

g=cc
; k ¼ 0:66 ð20Þ

and for cCJ¼ 3.25 (a value that we use later) we get:

aCJ ¼ 0:56; CCJ ¼ 1:17 ð21Þ

In the next section we make use of this EOS in calculations
of ECT.

Expanding Cylinder Test Simulations

We perform standard ECT simulations for two purposes:

. To compare simulations with the V1V2 EOS to simula-
tions with the JWL EOS and to test data.

. To check the sensitivity of the results to the values of the
adjustable parameters.

The standard ECT configuration is

. The dimensions of the explosive cylinder are 25mm
diameter and 300mm length.

. The explosive is inside a copper shell 2.5mm thick.

. The explosive is initiated by a plane wave on one of
its edges.
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. The copper shell motion is monitored at a distance of
200mm from the initiation plane.

. Diagnostics (preferably with a VISAR) include the radial
velocity (u) as function of the radial displacement (r� r0).

We use the PISCES commercial code, and the detonation
scheme is the PISCES ONTIME (like programmed burn).
The mesh in the explosive is two cells per millimeter in both
directions. The mesh in the copper is two cells per millimeter
in the longitudinal direction and four cells per millimeter in
the radial direction.

The first run is with the JWL EOS, and we compare the
results of this run with test data given in Gibbs and Popolato
[9]. We show the comparison in Fig. 5. We see from Fig. 5 that
the simulation with the JWL EOS reproduces the test data
rather decently, at least beyond a radial displacement of
5mm. We assume that the JWL EOS would also reproduce
the initial velocity steps. We regard the JWL results as repre-
senting the data, and we compare all the V1V2 simulations to

Figure 5. Radial velocity as a function of radial displacement in
ECT. Comparison of JWL simulation with experimental data.
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them. We regard the following parameters of the V1V2 EOS as
nominal:

cCJ ¼ 3:25; Q ¼ 3:73 kJ=g

V1 ¼ 1 cc=g; V2 ¼ 3 cc=g
ð22Þ

and c1 that fits these values is c1¼ 1.441.
In Fig. 6 we compare the u(r� r0) curve obtained with JWL

to that obtained with V1V2 with the nominal set of parameters.
We see from Fig. 6 that after the initial steps the agreement is
quite good, but the initial steps do not agree. The reason is that
to get an agreement at late times we have to use a value of cCJ
that is much higher than the one used with JWL. It seems that
the high value we use for cCJ is some kind of average of the
hump shown in Fig. 1.

In Fig. 7 we check the influence of decreasing cCJ. We see
from Fig. 7 that, as expected, the levels of the initial velocity
steps increase, but the late time portion of the curve also
increases significantly.

In Fig. 8 we check the influence of changing the heat of deto-
nation Q. We decrease Q from 3.73 to 3.50 kJ=g. The value of

Figure 6. Radial velocity as a function of radial displacement
in ECT. Comparison of V1V2 with JWL.
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c1 that goes along with this is c1¼ 1.638. We see from Fig. 8
that the influence of Q is rather small and that it can be
detected only at late times.

Figure 7. Radial velocity as a function of radial displacement
in ECT. Sensitivity to cCJ.

Figure 8. Radial velocity as a function of radial displacement
in ECT. Sensitivity to Q.
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In Fig. 9 we check the influence of the parameter V1. We
change V1 from 1 to 2 cm3=g. The appropriate value of c1 is
c1¼ 1.255. We see from Fig. 9 that increasing V1 lowers the
u(r� r0) curve but only at late times.

In Fig. 10 we check the influence of changing V2 from 3 to
5 cm3=g. The appropriate value of c1 is c1¼ 1.224. We see
from Fig. 10 that the effect of changing V2 is also quite small
and comes about at late times.

From the parameter sensitivity check we conclude that

. The largest sensitivity is to the parameter cCJ. Increasing
cCJ decreases the initial velocity steps and vice versa. To
get the correct levels of the initial velocity steps we need
to use cCJ¼ 3.10, but then the level at late time is much
too high, and it is not possible to lower it down to the
needed value by changing the other parameters.

. The influence of the other three parameters Q, V1, and
V2 is quite small, and it comes about only at late times.

. The V1V2 EOS (with monotonically decreasing cs) does
not have enough degrees of freedom to reproduce the

Figure 9. Radial velocity as a function of radial displacement
in ECT. Sensitivity to V1.
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whole u(r� r0) curve obtained from an ECT. To be able
to reproduce the experimental curve we need to add one
or more degrees of freedom by introducing a hump to the
right of the CJ point. In Fig. 11 we show a schematic
example like that with one additional parameter (c1).

Figure 11. A schematic description of a piecewise linear cs(V)
curve with a hump.

Figure 10. Radial velocity as a function of radial displacement
in ECT. Sensitivity to V2.
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Summary

Computing the adiabatic gamma (cs) along the main isentrope
of the JWL EOS, one gets a hump to the right of the CJ point.
A hump like this means that in logP� logV space, the adiabat
dips below the straight line adiabat through the CJ point,
which has a slope of cCJ. Experimental evidence on this was
obtained by many labs [3–5], but we are not aware that theore-
tical justification has been derived from basic considerations or
from chemical equilibrium EOSs. We therefore check here
whether it is possible to construct a product’s EOS based on
a main isentrope that has a monotonically decreasing cs(V).
We use a piecewise linear cs(V) curve, and we call the EOS
based on it the V1V2 EOS.

We apply V1V2 in simulations of a standard ECT.We compare
to a JWL simulation (which is shown to reproduce test data), and
we conduct a parameter sensitivity study. We find that

. It is possible to adjust the parameters to reproduce the
JWL result beyond the initial velocity jumps.

. The parameter cCJ affects the whole curve (shell velocity
versus shell displacement), including the initial velocity
jumps.

. The other three parameters affect only the late time level
of the velocity curve.

. To get full agreement with ECT data we need to add one
or more degrees of freedom to cs(V), which means to
introduce a hump to the right of the CJ point.
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